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CRD Motivation

o Application performance is what we care about
most.

e Using real applications for performance work can
be very tedious.

e Synthetic benchmarks are much easier.

« But we generally don’t understand how the
performance of synthetic benchmarks relates to
applications!

e Isthere a methodology to create synthetic
benchmarks, which capture the main
performance effects of real applications?
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o Select the main performance aspects of
our codes.

— (or what we believe they are).

 Develop a quantitative characterization for
these performance aspects.

— Avoid using any specific hardware models for
this characterization as far as possible!

 Develop a synthetic scalable performance

probe implementing these characteristics.
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e Test the usefulness of the
characterization with a set of codes.

* If we succeed the synthetic
benchmark performance can be used
as approximation for the application.

 Initial focus is the performance
Influence of global data-access.
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C RD Outline :'f’ ;_

 Application Performance
Characterization (Apex)

e Memory access probe (Apex-MAP)
 Test Kernels

 Results and Correlations

e Extensions
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Application Performance

Characterization (Apex)

 We ighore computational aspects
(for now).

 \We view data access as composed of
one or multiple data access streams.

e \We characterize data access streams
iIndependent of each other.

 We try to use as few streams as
possible (one).
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CRD Performance Aspects of

Data Access Streams

Regularity — 2 extremes:
— Random walk in memory
— Regular advance in memory

Data set size (M)

Length of contiguous data access (L)
— Vector Length

Temporal Locality (Re-use of data)

— Characterized by the mean (k) of the number of
accesses to the last location within the next M
accesses.

o Stride (for regular access streams?)
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Define a “re-use” number:
e Let Mbe the used memory in words.
e The code has atotal of N data accesses.

« We look at all the accesses to a memory
location X within the next M data access

steps.

« We call the average k of all these access
numbers the re-use number K.
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C R D Synthetic Benchmark

« Now we design a synthetic
benchmark which:

— Generates a single data access stream.

— Has our performance parameters as
Input.
— |s scalable.

— Is free of architecture specific
performance artifacts.
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CRD Execution Model

« Use an array of size M.
 Access data in vectors of length L.

Random:
— Pick the start address of the vector randomly.

— Use the properties of the random numbers to
achieve are-use number K.

 Regular:

— Walk over consecutive (strided) vectors
through memory.

— Re-access each vector k-times.
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CRD Memory Access Probe

Apex-MAP

For random access we choose:

e Use an 1024 address index for data access.

e Use the Power distribution for the non-uniform
random address generator.

— Self-similar and thus scale invariant.

— Exponent ? in [0,1]
e ?7=1: Uniform random access.

« ?=0: Access to a single vector only.
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CRD Apex-Map:

Inner Loop - Random

for (i=0;i<N;i++) {
initindexArray(l);
CLOCK(timel);
for j=0;j</4; j++) {
pos =ind[j*4];

for (k =0; k < L; k++) {
resO += data[pos + K];

}
}
CLOCK(time2);
}
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System Used

Freq. L1 L2 Max outstand. | Memory
[MHz] | [kB] [MB] load misses | Bandwidth
[GB/s]
Power3 200 64 4 4 3.2
Power3 | 375 64 38 4 4.0
Power4 | 1300 32 1.4 8 10.6
(L3 128)
Opteron | 1600 64 1 32 5.3
Xeon 2800 38 0.5 4 3.2
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CRD

Memory Hierarchy Test

L=1; uniform random (a=1)
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CRD Memory Hierarchy Detail

L=1; uniform random (a=1); Seaborg
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Vector Length

Uniform random (a=1); Seaborg 32 kb
64 kB
1,000 —=—128 kB
—o—2 MB
_ 100 —¥—8 MB
)
o —e— 524 MB
£ _ —W/K
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CRD Validation - Ideal

e Take a set of test codes.

 Characterize them by selecting
parameters.

e TiIme them.

e Run Apex-MAP with the same
parameters.

e Check the correlation between the
timings.
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e Userandom access for all kernels to start
with.

e Choose Mto be the memory used by the
kernel.

« Count the total number of memory
accesses on areference platform.

Do aleast-square fit of the times per
access to determine a single set of L and k
for all platforms.

— 1 =L =16k (powers of 2 or 4)
— a ={0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}
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 Radix (Integer Sort)

 N-Body (Interaction of N bodies in three
dimensions)

e NAS CG (Conjugate Gradient, sparse linear
systems)

e FFT (1-dimensional complex FFT)
 Matrix Transpose

o Matrix Matrix Multiplication
— This is included as ‘worst’ (least fitting) test-case.
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C R D Statistical Details ;.;;5

e Linear Timing Model.
Kernel = Factor * Apex-MAP

 No constant!
 Minimize the combined SSE (R?).

 This does not always give a clear
best choice.
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R? — Example

FFT on Seaborg

R-Square
a
0.001 0.003 0.005 0.010 0.025 0.050 0.100 0.250 0.500 1.000
0.52 0.36 0.19

o A~ DN

16

L 32
64

256

1024
4096
16384
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Ratio Kernel/Apex-MAP
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CRD
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CRD NAS CG — Indirect Vector only
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CRD
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CRD Matrix Transpose
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CRD

Matrix Transpose - regular
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CRD M-M Multiplication
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CRD M-M Multiplication - regular
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CRD

Parallel Radix — Early Tests
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CRD Parallel N-Body — Early Tests
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CRD Parallel CG — Early Tests
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A lot of the difficulties are in choosing the
right details of the implementation.

— Too many alternative implementations
possible.

— Which optimizations should one consider?

e The amount of measurements to do and to
analyze becomes easily overwhelming.

— Currently we take in the order of 3000
measurements per systems for the sequential
study alone. (and we do it multiple times)
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Conclusions

 Approximation of the more irregular
kernels by a single power function
random access stream works fine.

— In particular in the sequential case.
 The regular kernels are hard to

approximate with random access

streams and need a regular access
stream.

o Backfitting L and k I1s not trivial.
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